Publications
Publications are available in HAL
Submitted:
- Y. Zniyed, K. Usevich, S. Miron and D. Brie, ''Tensor-based framework for training flexible neural networks'', submitted.
Journal papers: [Hal archives]
- Y.
Zniyed and A.L.F. de Almeida, ''A stochastic algorithm for the ParaTuck decomposition'', Digital Signal Processing, 2024, accepted.
- V.T. Pham, Y.
Zniyed and T.P. Nguyen, ''Efficient tensor decomposition-based filter pruning'', Neural Networks, 2024, accepted. [CODE]
- V.T. Pham, Y.
Zniyed and T.P. Nguyen, ''Enhanced network compression through tensor decompositions and pruning'', IEEE Transactions on Neural Networks and Learning Systems, 2024, accepted. [CODE]
- M. Giraud, V. Itier, R. Boyer, Y.
Zniyed and A.L.F. de Almeida, ''Tucker decomposition based on a tensor train of coupled and constrained CP cores'', IEEE Signal Processing Letters, vol. 30, pp. 758-762, 2023.
- S. Miron, Y. Zniyed, R. Boyer, A.L.F. de Almedia, G. Favier, D. Brie and P. Comon, "Tensor methods for multisensor signal processing", IET Signal Processing, 14, (10), p. 693-709, 2021.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, "A TT-based hierarchical framework for decomposing high-order tensors", SIAM Journal on Scientific Computing (SISC), vol. 42, pp. 822-848, 2020.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, "Tensor Train Representation of Massive MIMO Channels using the Joint Dimensionality Reduction and Factor Retrieval (JIRAFE) Method", Elsevier, Signal Processing (SP), vol. 171, Article 107479, 2020.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, "High-order tensor estimation via trains of coupled third-order CP and Tucker decompositions", Linear Algebra and its Applications (LAA), vol. 588, pp. 304-337, 2020.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, "Multidimensional Harmonic Retrieval Based on Vandermonde Tensor Train", Elsevier, Signal Processing (SP), vol. 163, pp. 75-86, 2019.
- V.T. Pham, Y. Zniyed and T.P. Nguyen,
"Hybrid network compression through tensor decompositions and pruning", in Proc. of the 32nd
European Signal Processing Conference, EUSIPCO'24, Lyon, France, 2024.
- K. Usevich, Y. Zniyed, M. Ishteva, P. Dreesen and A.L.F. de Almeida, "Tensor-based two-layer decoupling of multivariate polynomial maps", in Proc. of the 31st European Signal Processing Conference, EUSIPCO'23, Helsinki, Finland, 2023.
- V.T. Pham, Y. Zniyed and T.P. Nguyen, "Élagage efficace des filtres basé sur les décompositions tensorielles", GRETSI 2023, Grenoble, France
- M. Giraud, V. Itier, R. Boyer, Y.
Zniyed and A.L.F. de Almeida, "Décomposition de Tucker basée sur un train de tenseurs avec des cœurs CP contraints couplés", GRETSI 2023, Grenoble, France.
- O. Imhogiemhe, J. Flamant, X. Luciani, Y.
Zniyed and S. Miron, "Low-rank tensor decompositions for quaternion multiway arrays", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Greek island of Rhodes, 2023.
- J. Flamant, X. Luciani, Y. Zniyed and S. Miron, "Tenseurs à valeurs quaternioniques : un objet mathématique à identifier", GRETSI 2022, Nancy, France.
- Y.
Zniyed, K. Usevich, S. Miron and D. Brie, "Une approche tensorielle pour entrainer des réseaux de neurones flexibles", GRETSI 2022, Nancy, France.
- Y. Zniyed, K. Usevich, S. Miron and D. Brie, "Tensor-based approach for training flexible neural networks", ASILOMAR, Pacific Grove, California, US, Nov 2021.
- Y.
Zniyed, K. Usevich, S. Miron and D. Brie, "Learning nonlinearities in
the decoupling problem with structured CPD", IFAC symposium
on System Identification, Padova, Italy, 2021.
- A. Boudehane, Y. Zniyed, A. Tenenhaus, L. Le Brusquet and R. Boyer, "Dictionary-based tensor-train sparse coding", in Proc. of the 28th European Signal Processing Conference, EUSIPCO'20, Netherlands, 2021.
- Y. Zniyed, S. Miron, R. Boyer and D. Brie, "Uniqueness of Tensor Train Decomposition with Linear Dependencies", in Proc. of IEEE CAMSAP, 2019, Le Gosier, Guadeloupe.
- A. Boudehane, Y. Zniyed, A. Tenenhaus, L. Le Brusquet and R. Boyer, "Breaking The Curse of Dimensionality for Coupled Matrix-Tensor Factorization", in Proc. of IEEE CAMSAP, 2019, Le Gosier, Guadeloupe.
- Y. Zniyed, S. Miron, R. Boyer and D. Brie, "Uniqueness of Tensor Train Decomposition with Linear Dependencies", GRETSI, 2019, Lille, France.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, "Tensor-Train Modeling for MIMO-OFDM Tensor Coding-And-Forwarding Relay Systems", in Proc. of the 27th European Signal Processing Conference, EUSIPCO'19, Spain.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, "High-Order CPD Estimation with Dimensionality Reduction Using A Tensor Train Model", in Proc. of the 26th European Signal Processing Conference, EUSIPCO'18, Rome, Italy.
Book chapters: [Hal archives]
- Y.
Zniyed, O. Karmouda, R. Boyer, J. Boulanger, A.L.F. de Almedia and G.
Favier, ''Structured Tensor-Train Decomposition for Speeding-Up
Kernel-Based Learning'', Tensors for Data Processing, Edited by Yipeng Liu, chapter 14, pp. 537-563, 2022.